Flows and functional inequalities for fractional operators
نویسندگان
چکیده
منابع مشابه
Weighted Norm Inequalities for Fractional Operators
We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...
متن کاملWeighted Inequalities for Generalized Fractional Operators
In this note we present weighted Coifman type estimates, and twoweight estimates of strong and weak type for general fractional operators. We give applications to fractional operators given by an homogeneous function, and by a Fourier multiplier. The complete proofs of these results appear in the work [5] done jointly with Ana L. Bernardis and Maŕıa Lorente.
متن کاملOn weighted inequalities for certain fractional integral operators
and Dn denotes the derivative operator ∂/∂x1, . . . ,∂xn. The operators in (1.1) provide multidimensional generalizations to the well-known one-dimensional Riemann-Liouville andWeyl fractional integral operators defined in [5] (see also [1]). The paper [7] considers several formulas and interesting properties of (1.1). By invoking the Gauss hypergeometric function 2F1(α,β;γ;x), the following ge...
متن کاملHardy-lieb-thirring Inequalities for Fractional Schrödinger Operators
We show that the Lieb-Thirring inequalities on moments of negative eigenvalues of Schrödinger-like operators remain true, with possibly different constants, when the critical Hardy-weight C|x|−2 is subtracted from the Laplace operator. We do so by first establishing a Sobolev inequality for such operators. Similar results are true for fractional powers of the Laplacian and the Hardy-weight and,...
متن کاملGeneralized Hermite-Hadamard type inequalities involving fractional integral operators
In this article, a new general integral identity involving generalized fractional integral operators is established. With the help of this identity new Hermite-Hadamard type inequalities are obtained for functions whose absolute values of derivatives are convex. As a consequence, the main results of this paper generalize the existing Hermite-Hadamard type inequalities involving the Riemann-Liou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicable Analysis
سال: 2017
ISSN: 0003-6811,1563-504X
DOI: 10.1080/00036811.2017.1286647